newsare.net
Привет, Хабр! Мы в команде «Вычислительная семантика» в AIRI сфокусированы на исследовании галлюцинаций и решении проблем доверительнОстанется ли это правдой завтра? Как проверка устойчивости фактов помогает LLM стать честнее и умнее
Привет, Хабр! Мы в команде «Вычислительная семантика» в AIRI сфокусированы на исследовании галлюцинаций и решении проблем доверительной генерации. Мы учимся находить галлюцинации и бороться с ними. Большие языковые модели (LLM) вроде GPT-4 стали незаменимыми помощниками в повседневной жизни — от генерации текстов до поддержки в кодинге и ответов на вопросы. Однако у них есть ахиллесова пята: они часто галлюцинируют. В этом посте мы разберем нашу последнюю работу Will It Still Be True Tomorrow?, посвященную тому, как на надёжность моделей влияет феномен неизменного вопроса (evergreen question) — то есть вопроса, ответ на который не зависит ни от времени, когда вы его задаёте, ни от места, вопроса про факт, который зафиксирован в истории и не меняется от обстоятельств. В рамках этой работы мы совместно с MWS AI собрали датасет изменяемых и неизменных вопросов EverGreenQA (открытый доступ), обучили классификатор на базе многоязычного энкодера E5, и применили его для оценки собственных знаний модели. Наши результаты показывают, что большие языковые модели чаще всего правильно отвечают на неизменные вопросы, не прибегая к помощи RAG пайплайна. Теперь обо всем по порядку. Read more