Оценка эффекта релиза, когда изменение затронуло не всех: diff-in-diff и синтетический контроль
Когда релиз раскатан не на всех, классическая схема «до» и «после» начинает рушиться: метрика растет или падает одновременно из-за сезонности, внешнего фона и изменений в каналах, а не только из-за продукта. При этом AB теста может не быть, но данные по группам есть почти всегда: по гео, сегментам, кластерам, витринам.В этой статье разбираю два практических подхода, которые позволяют оценить эффект релиза в таких условиях. Первый - diff-in-diff: сравниваем, насколько изменилась метрика в затронутой группе относительно контрольной, и тем самым вычитаем общий фон, который влияет на всех. Второй - синтетический контроль: строим базовую линию для затронутой группы как сумму метрик нескольких контрольных групп с весами, подобранными так, чтобы до релиза эта конструкция максимально повторяла историю затронутой группы.Отдельный акцент на том, что обычно искажает выводы: заметный рост или падение разницы между группами до релиза, изменения состава, локальные акции или технические инциденты в контрольных группах, а также ситуации, когда базовая линия плохо повторяет период до релиза и тогда мы измеряем в основном ошибку модели, а не эффект релиза. В конце показываю, какие проверки стоит сделать, чтобы результат не держался на удачно выбранных границах периода или на одной контрольной группе.Если в первой части мы работали с одной временной линией метрики, то здесь переходим к более распространенному случаю: несколько групп, частичная раскатка и необходимость отделить влияние релиза от общего шума. Читать далее