newsare.net
В 2022 году существовал ровно один способ сделать языковую модель «хорошей» — RLHF. Один. Если вы хотели, чтобы ваша LLM отвечала адекватно и хотя бОт RLHF к DPO и дальше: как мы разучились бояться и полюбили выравнивание LLM
В 2022 году существовал ровно один способ сделать языковую модель «хорошей» — RLHF. Один. Если вы хотели, чтобы ваша LLM отвечала адекватно и хотя бы делала вид, что понимает вопрос, — вам нужны были армия аннотаторов и бюджет уровня OpenAI.Четыре года спустя у нас зоопарк из десятка методов выравнивания, половину из которых можно запустить на одной RTX 4090 за выходные. DPO убрал reward model. SimPO убрал reference model. GRPO и DeepSeek R1 доказали, что RL жив — но в новой форме. Anthropic опубликовала конституцию Claude на ~80 страниц в открытом доступе и сменила парадигму: от правил к причинам.Мир изменился. Разбираемся, как именно.В статье — полная история пост-обучения от RLHF до Constitutional AI, математика ключевых методов (в спойлерах, без боли), рабочий код на TRL + QLoRA с гиперпараметрами, большие сравнительные таблицы и дерево решений «что выбрать для вашей задачи». Плюс честный разговор о проблемах, о которых не пишут в туториалах: distribution mismatch, reward hacking, catastrophic forgetting и почему модели умеют «притворяться» выровненными.Для разработчиков, ML-инженеров и всех, кто хоть раз открывал Hugging Face и думал: «а что если я это fine-tune...» Читать далее Read more











